Faculty Members / Research Areas

Search in Text
5 staffs/73 staffs

Professor

OZEKI Yasuyuki

Professor

Unveiling living systems with cutting-edge pulsed lasers

Ozeki Laboratory is pushing the boundaries of biological imaging using advanced optical pulse techniques. Our research focuses on developing new light sources and measurement systems, as well as applying these techniques to observe living systems. Our latest work includes high-speed molecular imaging, highly multiplexed imaging, and using quantum optics to increase sensitivity.

Photonics & Wireless Field
Measurement engineering
Photonics
Biosensing/imaging

HIROSE Akira

Professor

Neural Networks and Wireless Networks: See/feel/speak with radio-wave sensitive eyes and artificial intelligence (AI)

*Investigation of information processing principles in the brain from an electronic information engineering perspective, *Research on new information and signal processing technology by combining symbol processing and pattern processing, *Development of flexible electromagnetic/light measurement techniques, imaging and communication methods, and *Realization of useful systems and devices.

Photonics & Wireless Field
Soft computing
Natural disaster/Disaster prevention science
Electron device/Electronic equipment
Measurement engineering
Artificial Intelligence (AI)
Deep Learning and Generative AI
Quantum Computing
Wireless Communication (5G/6G)
Autonomous Vehicles and Robots
Healthcare Technology
Biosensing/imaging

YAMASHITA Shinji

Professor

Cutting Edge Laser Technology and Photonic Devices for Communications, Precision Measurements, Bio-Medical and Industrial Applications

Nanocarbons, such as Carbon nanotubes (CNT) and graphene, have very useful nonlinear photonic properties. We are pursuing researches on novel devices and short-pulse lasers using these nanocarbon materials. Especially, we have realized original and ultra-high performance fiber lasers, such as short-cavity short-pulse fiber lasers having high pulse repetition rate > 10GHz, and fast and wide wavelength swept fiber lasers that can sweep its wavelength in wide sweep range (>100nm) at very fast sweep speed (repetition rate > a few 100kHz). We are trying to apply these fiber lasers to communications, precision measurements, bio-medical and industrial applications.

Photonics & Wireless Field
Measurement engineering
Photonics