Problem 6
I.

Consider a speed control system of the DC servomotor represented by Eq. (i). Here, \(t \) is time, \(\omega(t) \) is the rotational angular velocity, and \(u(t) \) is the control input. In addition, \(s \) is the Laplace operator. \(W(s) \) and \(U(s) \) are the Laplace transformations of \(\omega(t) \) and \(u(t) \), respectively. Answer the following questions.

\[
\frac{d\omega(t)}{dt} = 2u(t) - 4\omega(t) \tag{i}
\]

(1) Derive the transfer function \(P_0(s) = \frac{W(s)}{U(s)} \) of this plant.

(2) For this plant, a feedback controller \(C(s) \) is designed as the proportional-integral controller expressed by Eq. (ii).

\[
U(s) = C(s)(R(s) - W(s)), \quad C(s) = K_p \left(1 + \frac{1}{\tau_i s} \right) \tag{ii}
\]

Here, \(R(s) \) is the Laplace transformation of the speed command \(r(t) \), \(K_p \) is the proportional gain, and \(\tau_i \) is the integration time.

(2-i) Derive the transfer function \(G(s) = \frac{W(s)}{R(s)} \) of the closed loop system.

(2-ii) Find the controller parameters \(K_p \) and \(\tau_i \) for placing the poles of the closed loop system at \(-40\) and \(-50\).

(2-iii) Calculate the time response of \(\omega(t) \) when a unit step function is given to the speed command \(r(t) \) for the closed-loop system obtained in Question (2-ii).

(3) Draw the root locus of the closed-loop system when \(\tau_i \) is fixed to 0.05 and \(K_p \) is changed from 0 to \(\infty \) in the controller of Eq. (ii).

(4) Find \(K_p \) that gives multiple roots of the closed-loop system in Question (3).

(5) Consider the stability when the plant has a modeling error of the mechanical resonance mode that is expressed by Eq. (iii) with \(0 < \zeta < 1 \), for the controller \(C(s) \) obtained in Question (2-ii).

\[
P_1(s) = \frac{\omega_p^2}{s^2 + 2\zeta \omega_p s + \omega_p^2} \tag{iii}
\]

(5-i) When \(\omega_p = 1000 \) and \(\zeta = 0.1 \), sketch the Bode diagram of the open-loop transfer function \(P_0(s)P_1(s)C(s) \) that has this modeling error using asymptotic approximations. Indicate numerical values such as the angular-frequency break-points, the slope of the gain diagram, and the angle of the phase diagram.

(5-ii) For \(\omega_p = 1000 \), find the range of \(\zeta \) that can guarantee the stability of the closed loop system.
II.

Consider a separately excited DC motor. Figure 1 shows the armature circuit. Let s be the Laplace operator. Answer the following questions.

(1) Consider deriving a mathematical model from the circuit equation and the equation of motion.

(1-i) Let $V_a(s)$, $I(s)$, and $W(s)$ be the Laplace transformations of the terminal voltage, armature current, and rotational angular velocity, respectively. Let R and L be the armature resistance and the armature inductance, respectively. Describe the armature circuit equation in the s domain. Here the back electromotive force $V_e(s)$ can be expressed as $K_e W(s)$, where K_e is the back electromotive force coefficient.

(1-ii) Describe the equation of motion of the rotor in the s domain where J is the moment of inertia. The torque generated by the motor and the viscous friction torque are represented as $T_m(s) = K_t I(s)$ and $T_v(s) = D_v W(s)$, respectively, where K_t is the torque coefficient and D_v is the viscous friction coefficient.

(2) To what kinds of work is the input power from voltage source V_a converted? Explain it using equations in time domain based on the circuit model obtained in Question (1-i). You may define the necessary variables by yourself.

(3) Consider applying a current feedback control system to the motor in Question (1). Draw the block diagram. Also, show that the transfer function from the current command $I^*(s)$ to the rotational angular velocity $W(s)$ can be approximately expressed as a first-order system when the controller has a sufficiently high gain.

Fig. 1