第1問

図1に示すように、半径\(a\)の円板電極A、Bと、半径\(a\)の円板電極Cが距離\(2d\)の間隔をもって、真空中に水平に配置されている。中心軸をz軸とする。電極A、B間は微小な空隙を介して電気的に絶縁され、電極Aには電源より電圧\(V\)が印加され、電極B、Cは接地されている。

電極Cの上には、比誘電率2、半径\(a\)、厚み\(d\)の誘電体円柱をその中心軸\(P-P'\)を含む平面で二等分した誘電体半円柱が置かれている。\(P-P'\)はz軸上にある。誘電体半円柱には、\(P-P'\)に沿って重さの無視できる十分細い絶縁体の軸棒が取り付けられており、誘電体半円柱をz軸を中心に電極C上を滑らかに回転させることができる。なお誘電体半円柱の上面(S面)は、真電荷面密度\(\sigma\)で一様に帯電させてある。

図2、図3に上下面図及び正面図を示す。電極A、B間の空隙に沿ってx軸を取り、誘電体半円柱のx軸からの回転角を\(\theta\)とする。真空の誘電率を\(\varepsilon_0\)とし、以下の問いに答えよ。ただし\(a\)は\(d\)に比べて十分大きく、電界分布への端部の影響は無視できるものとする。また重力の影響は無視できるものとする。

(1) 誘電体半円柱を\(\theta = \pi\)、すなわち電極Aの真下に配置したところ、S面の電位は\(2V/3\)であった。電極A、C間における真空中および誘電体内部の電界を求めよ。
(2) 問(1)においてS面の真電荷の面密度\(\sigma\)および分割電荷の面密度\(\sigma_0\)をそれぞれ求めよ。
(3) この誘電体半円柱を\(\theta = 0\)、すなわち電極Bの真下に配置したときのS面の電位を求めよ。
(4) \(\theta = \theta_0(0 \leq \theta_0 \leq \pi)\)としたとき、この系に隅りた静電エネルギーを求めよ。
(5) 問(4)において誘電体半円柱に働くx軸まわりのトルクを、仮想変位の考え方を利用して求めよ。
(6) 誘電体半円柱を\(\theta = \theta_0\)より自由に運動させた。誘電体半円柱の回転角\(\theta\)、角速度\(\omega\)を時刻\(t\)の関数として求め、グラフに示せ。ただし、\(t = 0\)において\(\theta = \theta_0\)、\(\omega = 0\)とし、この誘電体半円柱のx軸まわりの慣性モーメントを\(I\)とする。摩擦や電磁波の発生の影響は無視できるものとする。

ヒント：剛体の回転の運動方程式は、時刻\(t\)まわりの慣性モーメント\(I\)、角速度\(\omega\)、トルク\(N\)を用いて\(I\frac{d\omega}{dt} = N\)と表わされる。
Problem 1

As shown in Fig. 1, semicircular disc electrodes A and B of radius \(a\) and a circular disc electrode C of radius \(a\) are placed horizontally in vacuum, keeping a distance \(2d\). The centers of the electrodes are located on the \(z\) axis. The semicircular disc electrodes A and B are insulated from each other with a negligibly small slit. A voltage \(V\) is applied to the electrode A, and the electrodes B and C are grounded.

There is a semi-cylindrical dielectric on the electrode C. This semi-cylindrical dielectric corresponds to a half of a cylinder whose central axis is \(P-P'\). The radius, the thickness, and the relative permittivity of the semi-cylindrical dielectric are \(a\), \(d\), and \(2\), respectively. The \(P-P'\) axis is aligned with the \(z\) axis. The semi-cylindrical dielectric has an insulating axial rod with a negligible mass through \(P-P'\) and can rotate smoothly about the \(z\) axis on the electrode C. The upper surface (surface S) of the semi-cylindrical dielectric is uniformly charged with its true surface charge density \(\sigma\).

Figures 2 and 3, respectively, show the top and the front views of the electrode configuration. The \(x\) axis is chosen along the slit between the electrodes A and B. Let the rotating angle of the semi-cylindrical dielectric from the \(x\) axis be \(\theta\). The permittivity of vacuum is \(\varepsilon_0\). Here, \(a >> d\) holds. Ignore fringing of the fields and effects of the gravity. Answer the following questions.

1. When \(\theta\) is set to \(\pi\), i.e. the semi-cylindrical dielectric is located just below the electrode A, the potential on the surface S is \(2V/3\). Find the electric fields in vacuum and in the dielectric between the electrodes A and C.
2. In Question (1), find the true surface charge density, \(\sigma\), and the polarization surface charge density \(\sigma_p\) on the surface S.
3. Find the potential on the surface S, when \(\theta\) is set to 0, i.e. the semi-cylindrical dielectric is located just below the electrode B.
4. Find the electrostatic energy stored in the system when \(\theta\) is \(\theta_0\). Here, assume \(0 \leq \theta_0 \leq \pi\).
5. In Question (4), find the torque acting on the semi-cylindrical dielectric with respect to the \(z\) axis by utilizing the virtual work method.
6. The semi-cylindrical dielectric starts rotating at \(\theta = \theta_0\) from rest. Determine the angle \(\theta\) and the angular velocity \(\omega\) as a function of time \(t\), and plot them against \(t\). Here, suppose \(\theta = \theta_0\) and \(\omega = 0\) at \(t = 0\), and the moment of inertia about the \(z\) axis of the semi-cylindrical dielectric is \(I\). Ignore friction and electromagnetic wave generation.

Hint: For a rigid body rotating about a fixed axis, the following equation holds:

\[I \frac{d\omega}{dt} = N, \]

where \(I\) is the moment of inertia about the axis of the rotation, \(\omega\) is the angular velocity, and \(N\) is the torque.